GloveSight (MDR)

Navigation Assistance for the Visually Impaired

Team Makeup


Philip Colladay (Computer Engineering)

Anvita Patel (Computer Engineering)

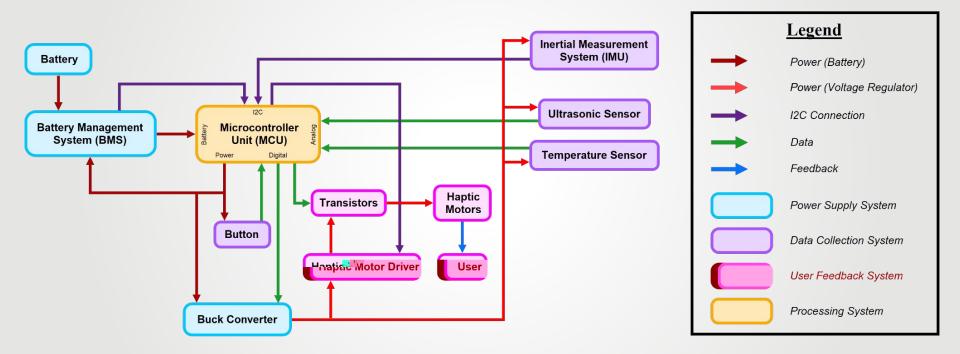
Jeffrey Matheson (Computer Engineering)

Nick Viehl (Electrical Engineering)

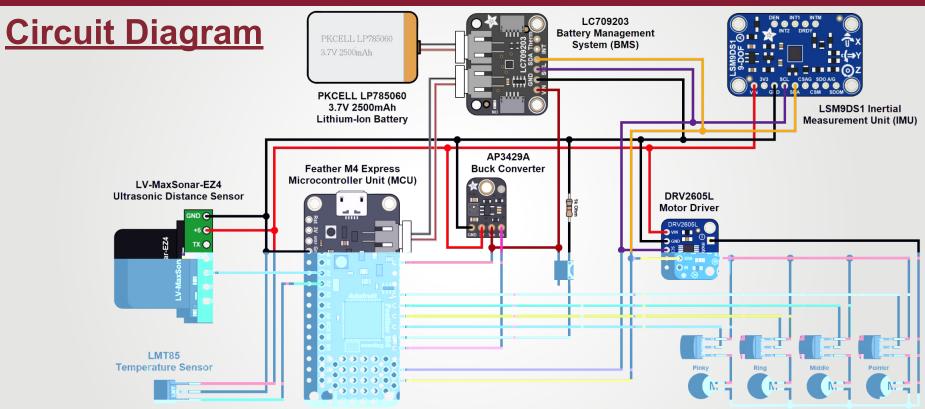
Problem Statement

Introduction: A Quick Overview of GloveSight

	Physically Non-Intrusive	Able to Convey Long Distances	Spherical Field of View	Mobility	Low Maintenance	Availability
Traditional Canes						
Smart Canes						
Collision Sentry Corner Pro						
Sighted Guide						
Guide Dogs						
GloveSight						



System Specifications

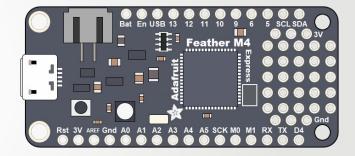


UNIVERSITY OF MASSACHUSETTS AMHERST - Department of Electrical and Computer Engineering | #6

Updated Hardware Block Diagram

UNIVERSITY OF MASSACHUSETTS AMHERST - Department of Electrical and Computer Engineering | #8

Hardware Used


•

•

Hardware Justification: MCU

Adafruit Feather M4 Express - Featuring ATSAMD51

Ο

0

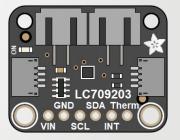
Hardware Justification: Ultrasonic Sensor & Temperature Sensor

Hardware Justification (Battery + BMS)

Battery

- •
- •
- •
- •

Battery Monitoring System (BMS)



- •
- •

Hardware Justification (Haptic Motors + Motor Driver + Transistors)

Eccentric Rotating Mass (ERM) Haptic Motors

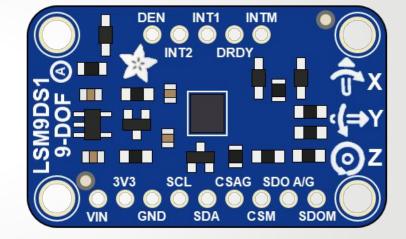
- Ø
- •
- •
- •

DRV2605L Motor Driver

- •
- •
- •
- •

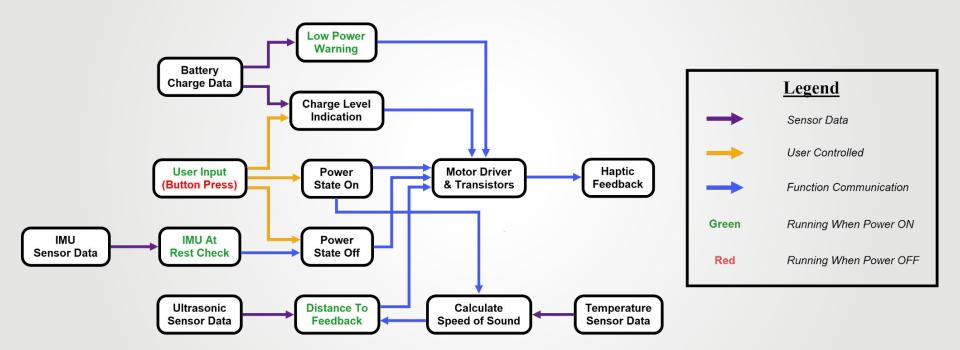
2N3904 Transistors

- •
- •
- •



Hardware Justification (IMU)

°C


LSM9DS1

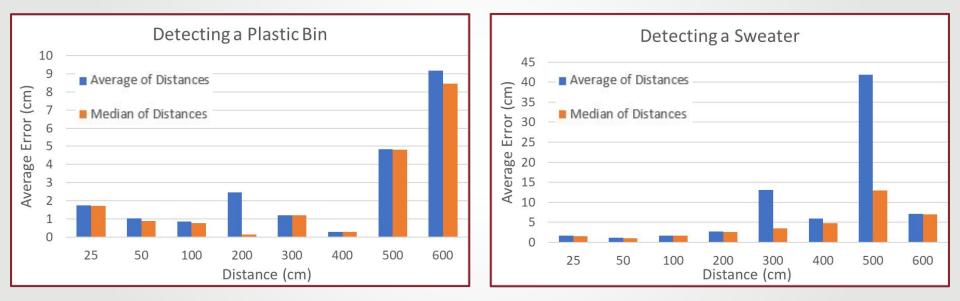
- •

Updated Block Diagram (Software)

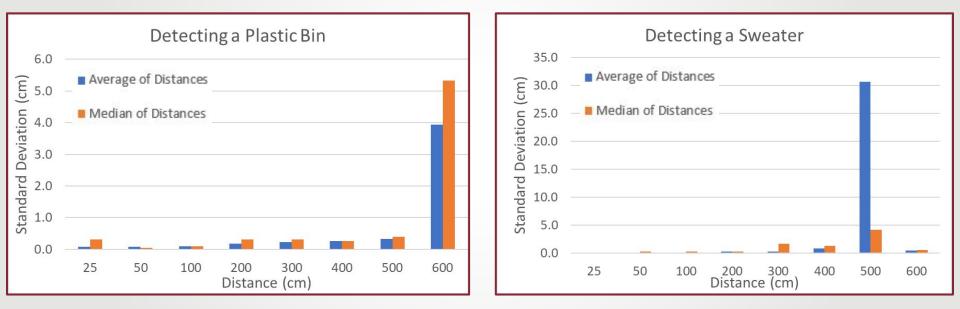
Distance Sensing


Distance Sensing Algorithm

Distance Sensing: Correcting Distance Data


Temperature Correction

MDR Deliverable:



Distance Sensing Testing: Average Distance Error

Distance Sensing Testing: Data Consistency

Distance-To-Feedback

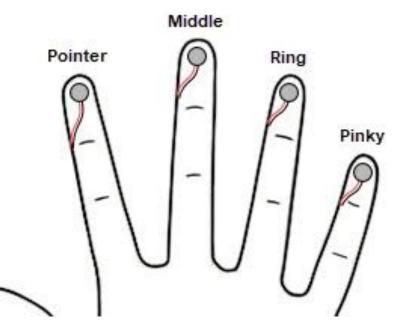

- 3. Will non-verbally communicate varying distance information to the user.
 - a. The user should be able to accurately approximate distances with only a minimal learning curve.

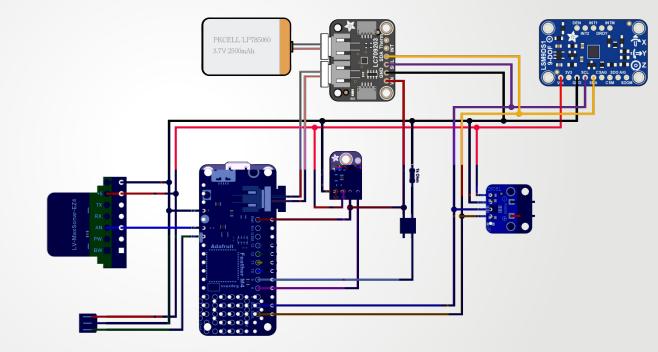
Distance to Feedback

0

- 0 0
- •
- **Accurate Distance Approximation**
 - •

 - •
 - •


Distance-To-Feedback (Demonstration)


Distance (15 to 598): < 15cm

Intensity (40 to 127): N/A

Finger: N/A

Power: BMS Implementation

UNIVERSITY OF MASSACHUSETTS AMHERST - Department of Electrical and Computer Engineering | #22

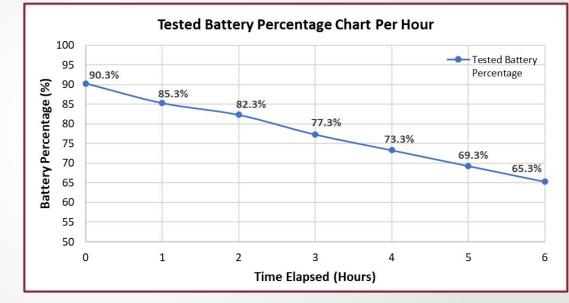
Power: Power Usage

PDR comments:

Typical day of the user consists of:

MDR Deliverable:

•


Power: Battery Testing and Results

Worst-Case Test: System On For 6 Hours

0

University of Massachusetts

Amherst BE REVOLUTIONARY

<u>User Input</u>

5. The user must be able to interact with the device without the need of their other hand.a. Able to control the power state of the device.

Why a Push Button?

- ٠
- •
- •

Power State Control

- •
- •
- •
- •

Charge Level Indication

Chachargec

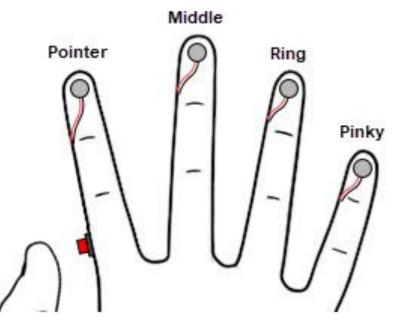
 $ge \ll 0'$

5. The user must be able to interact with the device without the need of their other hand.

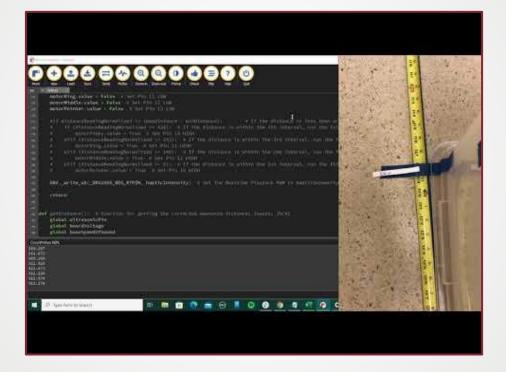
b. Able to communicate charge level to the user upon request.

User Input

4. Have a rechargeable battery life of at least 6 hours.



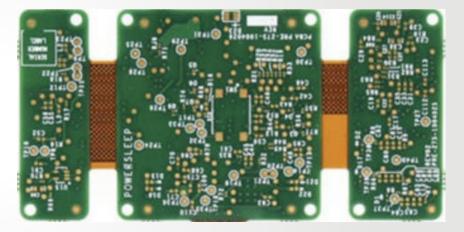
Charge Level Indication (Demonstration)



Charge Level (0 to 100): 100/100

Finger(s): N/A

Performance of the Integrated System



PCB Commitment

PDR Comments:

Current Expenditures and Weights

System Component	Quantity	Costs		
-,		Price of Part(s)	Shipping Costs	
Push Button Switches	2	\$1.90	\$7.96	
Temperature Sensors	2	\$1.45	\$15.53	
Motor Driver	1	\$7.95		
ERM Coin Motor	12	\$14.40		
USB LiPoly Charger	1	\$5.95		
BMS	1	\$6.95	\$9.02	
Li-Po Battery	1	\$14.95		
Buck Converter	2	\$7.80		
Total		\$93	.86	

System Component	Current Weight (g)	
Push Button Switch	0.5	
Temperature Sensor	0.5	
Motor Driver	1	
ERM Coin Motors	0.9 * 4 = 3.6	
Transistors	0.5 * 4 = 2	
Ultrasonic Sensor	4.3	
IMU	1.8	
BMS	2.4	
Li-Po Battery	43	
Buck Converter	0.9	
MCU	5	
Total	65g	

Projected Expenditures

System Component	Cost (\$)		
	Predicted	Contingencies	
Total (Ranged)	\$280 - 500		

Team Member Responsibilities

Philip Colladay

•

Jeffrey Matheson

- •
- •

Anvita Patel

- _____
- •

Nick Viehl

- _____
- •

MDR Deliverables

Overall Goal

~

Specific Goals

~

V

1

1

•

Plan for CDR

Software

1. Distance Sensing Improvements:

• ____

- 2. Haptic Feedback
 - _____
- 3. Conversion of System Code From Python to C

<u>Hardware</u>

- 1. Ultrasonic Sensor:
- 2. Power

•

•

- Determining Final Battery Size
- 4. Button

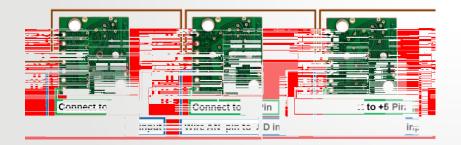
5. First PCB Design Fabrication

<u>Other</u>

3.

1. Glove Design Prototype

Addressing PDR Comments and Concerns


Distance Sensing

Comment:

Action:

Comment:

Action:

Range (meters)	PDR Tolerance (centimeters)	Updated Tolerance (centimeters)
		a a
		a a
		o o

Addressing PDR Comments and Concerns

<u>User Experience</u>

Comment

Actiop p s

el 🗆 🗆

٠

t

General Citations

Image Citations

Lithium Ion Battery

Maxbotix Ultrasonic Rangefinder - LV-EZ4 - LV-EZ4

Coin Vibration Motors

Transistor - 2N3904, TO-92 case, NPN, Lead Free

Tactile Push Button Switch 4 Pin

OEM ODM FPC Flexible Cable Flex PCB

LMT85LPGM

Questions / Answers Session

UNIVERSITY OF MASSACHUSETTS AMHERST - Department of Electrical and Computer Engineering | #40